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Abstract
The optimized effective potential (OEP) method provides an additional level of
exactness in the computation of electronic structures, e.g. the exact exchange
energy can be used. This extra freedom is likely to be important in moving
density functional methods beyond traditional approximations such as the local
density approximation. We provide a new density-matrix-based derivation of
the gradient of the Kohn–Sham energy with respect to the effective potential.
This gradient can be used to iteratively minimize the energy in order to find the
OEP. Previous work has indicated how this can be done in the zero temperature
limit. This paper generalizes the previous results to the finite temperature
regime. Equating our gradient to zero gives a finite temperature version of the
OEP equation.

1. Introduction

The Kohn–Sham density functional theory (DFT) [1] has become one of the most powerful
tools for understanding and predicting the properties of materials. DFT has been applied
to an ever increasing number of different types of systems and phenomena, and the results
have frequently been remarkably useful. Nevertheless, the accuracy of the results remains
an important issue for many potential applications of DFT. The main source of error in DFT
calculations is the use of an approximate expression for the exchange–correlation energy, EXC.
Such an approximation is necessary for practical calculations, but improving the quality of the
approximation, and hence the accuracy of the calculations, is of great interest. Conventional
variants of DFT, such as the local density approximation (LDA) and the generalized gradient
approximation (GGA), take EXC to be an explicit functional of the electronic density. Since
the non-interacting Kohn–Sham orbitals are implicit functionals of the electronic density [2],
expressions for EXC that explicitly depend on the Kohn–Sham orbitals are also consistent
with the DFT framework. An important example of such a functional is the functional used
in the exact-exchange approximation [3–9]. An explicit dependence on the orbitals allows
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approximate EXC expressions to capture physical behaviours of the exact Kohn–Sham EXC

that cannot be practically incorporated in an expression that is an explicit function of only the
electronic density. One example is the absence of self-interaction in the exact Kohn–Sham
energy. Another example is the complex, non-local behaviour of the exact exchange energy
(see, for example, [10]). The exact exchange energy is the essential element in achieving the
fourth rung of Perdew’s famous Jacob’s ladder of density functional approximations [11].

The difficulty in using an EXC expression that is explicitly dependent on the orbitals is that
it is impossible to straightforwardly take the functional derivative of EXC with respect to the
electronic density. Therefore, standard self-consistent methods of minimizing the energy with
respect to the density cannot be used. The solution to this problem is provided by the optimized
effective potential (OEP) formalism. Since the energy is a functional of the Kohn–Sham
orbitals, and the orbitals are solutions of the Kohn–Sham equation for some local potential, the
energy can be viewed as a functional of the potential. The OEP is defined to be the potential that
minimizes the energy. This minimization with respect to the potential is equivalent to the usual
minimization with respect to the density. Traditionally, the OEP has been calculated by solving
the OEP integral equation, in which the gradient of the energy with respect to the potential is
set to zero [3–5, 7], or by directly evaluating and inverting a response function [6, 8, 9].

Several recent papers have proposed calculation of the OEP by means of an iterative
minimization of the energy [12–15]. Yang and Wu expanded the potential as a sum of basis
functions, and used the chain rule and perturbation theory to derive an expression for the
derivative of the energy with respect to the coefficients of the basis functions [12]. Their
expression involves a sum over unoccupied orbitals, and therefore their approach is most
suitable for basis sets, such as Gaussian orbitals, that use a relatively small number of functions.
Hyman, Stiles and Zangwill used Lagrange multiplier methods to derive an expression for
the gradient of the energy with respect to the potential that does not involve an explicit
sum over unoccupied orbitals, and they proposed using this gradient to minimize the energy
iteratively [13]. Kummel and Perdew derived an expression nearly identical to that of Hyman,
Stiles and Zangwill [14, 15]. Although they did not claim that this expression gives the gradient,
they noted that it provides a good update to the potential during an iterative minimization. In
this paper, we present a new derivation of the gradient based on the density matrix. Our work
goes beyond the previous papers in the following ways: (1) We believe that our derivation is
particularly transparent, and therefore it demonstrates that the expression found in [13–15] is, in
fact, the correct gradient. (2) The previous work assumed a negligible electronic temperature.
Since our derivation is based on the density matrix, it is easily extended to finite temperatures,
where the orbitals are partially occupied.

One of the most exciting recent applications of DFT has been high energy density
physics [16, 17]. In this application, electronic temperatures that are substantial compared
to the band gaps of typical semiconductors are common. This makes the results sensitive to the
band gap, which is too small in the standard versions of DFT. Therefore, the ability to perform
calculations with advanced functionals that have an explicit dependence on the orbitals at non-
zero temperature is particularly important for high energy density physics applications.

As an alternative to iterative minimization of the energy using the gradient, it is possible, in
principle, to find the OEP by solving the equation in which the gradient is set to zero. Therefore,
our work provides the finite temperature equivalent of the standard OEP equation, giving the
correct necessary condition for local optimality.

In this paper we derive the OEP method in a finite temperature regime by considering the
perturbation of the density matrix resulting from a perturbed Hamiltonian. The gradient will
reduce to a combination of orbital shifts as one sees in the zero temperature limit, plus some
corrections which come from the finite temperature. In section 2, we begin with a mathematical
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discussion of the perturbation theory of analytic functions of Hermitian operators. After a short
review of DFT, we apply the results of section 2 to the density matrix P viewed as a function of
the Kohn–Sham Hamiltonian H , and thereby derive a finite temperature OEP equation in terms
of H and P . This motivates the subsequent section, which describes the gradient expression in
orbital form. We conclude with some computational results demonstrating the accuracy of the
method.

2. Perturbation theory of operator functions

A scalar function f : R → R naturally extends to a mapping of Hermitian operators to
Hermitian operators by

f (H ) =
∑

i

f (λi )φiφ
†
i , (1)

summing over all eigenvectors φi of H with eigenvalue λi (see [18], chapter 6). The example
with which we are primarily concerned is when H is a finite sized Hamiltonian matrix and
f (x) = (1 + exp(βx))−1 is the Fermi function, although the results in this section are more
general. Our primary goal is to develop formulas for the first variation of f (H ) with respect to
an arbitrary variation in H .

If φ1, . . . , φNb is a complete basis of eigenvectors of H , with eigenvalue λi , and f is
analytic, then the first variation (by an infinitesimal δH ) has a simple form,

δ f (H ) = f (H + δH )− f (H ) =
Nb∑

i, j=1

� f (λi , λ j )φi

(
φ

†
i δHφ j

)
φ

†
j

where � f (x, y) is the first divided difference of f , given by

� f (x, y) =





f (x)− f (y)

x − y
x �= y

f ′(x) x = y.

This formula can be directly verified for the matrix-power functions H k for all k,

(H + δH )k − H k =
k−1∑

m=0

H m(δH )H k−m−1

=
k−1∑

m=0

∑

i j

λm
i λ

k−m−1
j φi

(
φ

†
i δHφ j

)
φ

†
j

=
∑

i j






λk
i − λk

j

λi − λ j
λi �= λ j

kλk−1
i λi = λ j




φi

(
φ

†
i δHφ j

)
φ

†
j ,

which, by linearity, extends to all power series.

3. Density functional theory review

Let P be a density matrix (Hermitian), K be the kinetic energy operator and VI be the ionic
(and external) potential, with EHXC(P) the Hartree, exchange and correlation energy. With
S(P) = − tr{P log(P) + (I − P) log(I − P)} as the entropy expression and β inversely
proportional to temperature, the variational energy is

E(P) = tr{P(K + VI )} + EHXC(P)− 1

β
S(P). (2)
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The unconstrained derivative is
∂E

∂P
= K + VI + ∂EHXC

∂P
+ 1

β
log(P(I − P)−1).

The Kohn–Sham Hamiltonian is given by H = K + VI + V where V is the self-
consistent potential (to be determined). In the Kohn–Sham DFT, P is the minimizer of
tr{P H } − (1/β)S(P) with tr{P} = n, which is equivalent to the conditions

P = 1

1 + exp(β(H − µI ))
= fβ(H − µI ) (3)

tr{P} = n (4)

for some chemical potential µ. Thus, we can consider P to be parametrized by two unknowns
V and µ with two relations (3) and (4). Note: one could absorb µ into V , but we find it
advantageous to keep it distinct in its role as a Lagrange multiplier.

With P satisfying these relations, the energy differential simplifies to

∂E

∂P
= K + VI + ∂EHXC

∂P
+ 1

β
log(P(I − P)−1) (5)

= K + VI + ∂EHXC

∂P
− (H − µI ) (6)

= ∂EHXC

∂P
− (V − µI ). (7)

4. Finite temperature OEP with density operators

From section 3, the density matrix is related to the Kohn–Sham Hamiltonian, H , by (3) and (4).
Let εi be the eigenvalues of H , and let ωi = fβ(εi − µ) be the eigenvalues of P . The divided
difference factors are given by

ωi j ≡ � fβ(εi − µ, ε j − µ) =





ωi − ω j

εi − ε j
εi �= ε j

−βωi(1 − ωi ) εi = ε j

(8)

and we write �ω[X] = ∑
i j ωi jφi (φ

†
i Xφ j )φ

†
j . In an H -diagonalizing basis, with Xi j ≡

φ
†
i Xφ j for any X , �ω has the action Xi j → ωi j Xi j . We note that

ωi j =






− sinh(β(εi − ε j)/2)

2(εi − ε j) cosh(β(εi − µ)/2) cosh(β(ε j − µ)/2)
εi �= ε j

− β

4 cosh(β(εi − µ)/2)2
εi = ε j

is equivalent to (8), but numerically more accurate.
Let E(P) be a function of a density matrix, P . We can implicitly define E(H ) =

E(P(H, µ(H ))). Formally varying E(H ),

δE(H ) = tr

{
∂E(P(H, µ))

∂P
δP

}

in an H -diagonalizing basis,

δPi j = ωi j
(
δHi j − δµδi j

)
.

By (4), the trace of δP vanishes,

δµ =
∑

ii ωiiδHii∑
ii ωii

= tr{P(I − P)δH }
tr{P(I − P)} .
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Thus, in an H -diagonalizing basis,

δE =
∑

i j

∂E

∂Pi j
ωi j

(
δHi j − δµδi j

)

=
∑

i j

∂E

∂Pi j
ωi j

(
δHi j − δi j

∑
k ωkkδHkk∑

k ωkk

)

=
∑

i j

ωi j

(
∂E

∂Pi j
− δi j

1∑
k ωkk

∑

k

ωkk
∂E

∂Pkk

)
δHi j

and the gradient is therefore

∂E

∂Hi j
= ωi j

(
∂E

∂Pi j
− δi j

χ

ζ

)
(9)

∂E

∂H
= �ω

[
∂E

∂P
− χ

ζ
I

]
(10)

where χ = ∑
kk ωkk

∂E
∂Pkk

= tr
{
�ω

[
∂E
∂P

]}
and ζ = ∑

k ωkk = tr {�ω[I ]}. Note: these
expressions are manifestly traceless.

To obtain an OEP gradient, we restrict the variability of H to H = H0 + V where
H0 = K + VI is fixed and V is a local operator. The gradient is then

∂E

∂V (r)
=
∑

i j

φi(r)
∂E

∂Hi j
φ∗

j (r) (11)

where φi (r) is the eigenvector of H with eigenvalue εi in the position representation.

5. Finite temperature OEP with orbitals

Instead of representing the density matrix, it is often more practical to express P in terms of an
incomplete basis of partially occupied orbitals. Let φ1, φ2, . . . , φNb be a complete eigenbasis
of H sorted non-decreasingly in eigenvalue (H is Nb × Nb). Let N be sufficiently large that
ωi , ωi j ∼ 0 when i, j > N . Then we may truncate the basis so that

P = φ�φ† (12)

where φ = [φ1 φ2 · · · φN ] is Nb × N , � is the diagonal matrix of the first N eigenvalues
and � is the diagonal matrix with entries ω1, . . . , ωN (i.e. � = fβ(� − µI )). Note: N will
usually be smaller than the number of primitive basis elements, Nb , so φ will be a rectangular
matrix with orthonormal columns, i.e. φ†φ = I (the N × N identity) and φφ† is the Nb × Nb

orthogonal projector onto the span of the φi (and hence commutes with H ).
Since ωii ∼ 0 for i > N , the expressions for χ and ζ can be truncated,

χ =
N∑

i=1

ωii
∂E

∂Pii
, ζ =

N∑

i=1

ωii .

Since ωi j ∼ 0 when i, j > N , all components of ∂E
∂Hi j

, given by (9), likewise vanish and

∂E

∂H
=
∑

i, j�N

φi J̄i jφ
†
j +

∑

i�N< j

φi

(
ωi j

∂E

∂Pi j
φ

†
j

)
+

∑

j�N<i

(
φiωi j

∂E

∂Pi j

)
φ

†
j

= φ J̄φ† + φψ† + ψφ†
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where ψ is Nb × N with ψ j = ∑
N<i φi

(
ωi j

∂E
∂Pi j

)
and J̄ is the N × N (Hermitian) matrix

given by

J̄i j = ωi j

(
∂E

∂Pi j
− χ

ζ
δi j

)
= ωi j

(
φ

†
i

∂E

∂P
φ j − χ

ζ
δi j

)

requiring only matrix elements on φ. This gives an orbital form of (11),

∂E

∂V (r)
=

N∑

i, j=1

φi(r) J̄i jφ
∗
j (r)+

N∑

i=1

(
φi (r)ψ

∗
i (r)+ ψi (r)φ

∗
i (r)

)
(13)

which is similar to the equation derived in numerous sources in the OEP literature [13, 14],
with a modification (the J̄ term) to accommodate the finite temperature regime.

If full diagonalization were possible, then one need only evaluate ∂E
∂Pi j

, which by (7) is

∂E

∂Pi j
= φ

†
i

∂E

∂P
φ j =

∫ ∫
φi(r)

[
∂EHXC

∂P(r, r ′)
− δ(r − r ′)V (r)

]
φ j(r

′) d3r d3r ′,

and carry out the sums. Alternatively, for any j � N < i , we have

(εi − ε j)ωi j = −ω j

(εi − ε j)φiωi j
∂E

∂Pi j
= −ω jφi

∂E

∂Pi j

∑

N<i

εiφiωi j
∂E

∂Pi j
− ε j

∑

N<i

φiωi j
∂E

∂Pi j
= −

∑

N<i

φi
∂E

∂Pi j
ω j

which can be expressed in basis-free terms as

(H − ε j I )ψ j = −(I − φφ†)
∂E

∂P
φ jω j . (14)

The left- and right-hand sides of (14) are orthogonal to φ, by construction, as is each ψ j . Thus
an iterative method (e.g. conjugate gradient or MINRES [19, 20]) can be used to solve for ψ
while preserving the constraint φ†ψ = 0.

We digress momentarily to recover the results of [14] in the zero temperature limit.
Assuming that λN < µ < λN+1,

ωi =
{

1 i � N

0 i > N
and ωi j =






1

εi − ε j
i � N < j

1

ε j − εi
j � N < i

0 else.

J̄ = 0, χ = ζ = 0 and ψ is given by,

ψ j (r) =
∑

i>N

φi(r)

εi − ε j

∂E

∂Pi j

=
∑

i>N

φi(r)

εi − ε j

∫ ∫
φi(r)

[
∂EHXC

∂P(r, r ′)
− δ(r − r ′)V (r)

]
φ j (r

′) d3r d3r ′.

The only non-trivial difference between this result and that of [14] is the sum defining ψ j (r),
which, in (3) of [14], ranges over all i �= j instead of i > N . Such ψi are the unnormalized
orbital shifts of the perturbed Hamiltonian H + δH and are of some interest. However,
∂E
∂Pi j

= ∂E∗
∂Pj i

ensures that this difference vanishes in the sum in (13).

Finally, we note that ωii ∼ 1
4β if εi ∼ µ, which suggests that in the low temperature limit

numerical instability might result if any of the eigenvalues of H are close to the Fermi level.
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6. Computational results

In order to test the above approach, it was implemented in the orbital representation within
the Socorro electronic structure software using a plane wave basis set and norm-conserving
pseudopotentials. The conjugate gradient algorithm was used to solve the linear systems
involved in the evaluation of the gradient. Using this algorithm, the computational cost of
solving the set of linear systems determining ψ is comparable to the cost of solving the
Kohn–Sham eigenproblem for φ. Therefore, each gradient evaluation is approximately as
computationally expensive as one step of the self-consistency loop in a standard DFT code.

For traditional approximations to the exact DFT, such as the LDA and GGA, EHXC is an
explicit functional of the electronic density, which is the diagonal of the density matrix P in a
position representation. In this case, ∂EHXC

∂P has the form of a local potential operator VHXC, and
the energy minimum occurs at self-consistency, i.e. when V = VHXC. In this case, the OEP
is the self-consistent potential, and the results of our iterative minimization approach can be
compared directly to well-tested results obtained from conventional self-consistent methods.

In the case of exact exchange (EXX) calculations, we neglect correlation and take EHXC to
be the sum of the Hartree and exchange energies. The evaluation of EHXC and ∂EHXC

∂P involves
the same exchange integrals as required in a Hartree–Fock calculation, but they only need to be
performed once per gradient evaluation. We follow the approach of Gygi and Baldereschi to
evaluate the exchange integrals using a plane wave basis [21].

Our test system consists of a two-atom unit cell of silicon in the diamond structure.
We used a 20 Ryd plane-wave cutoff and a 2 × 2 × 2 Monkhorst–Pack k-point sampling.
This k-point sampling does not give a converged total energy, but this is not an issue for the
purpose of testing our approach. Two electronic temperatures were used: (1) room temperature
(kBT = 25.67 meV) and (2) high temperature (kBT = 1.0 eV).

In order to test the correctness of our gradient, we applied the finite difference approach
to the EXX energy functional. During each of a series of steps, the value of V at each point
on a real-space grid was varied by a small (o(10−4)) random perturbation �V (r). During this
random walk, the energy and the gradient were evaluated at each step. A linear approximation
to the change in energy during each step is given by

�E ≈
∫

∂E

∂V (r)
�V (r) dr . (15)

For the small steps taken in this test, we would expect this linear approximation to be accurate
if the gradient is accurate. Therefore, we can compare this predicted energy change to the
actual energy change observed during the random walk. The results of this comparison for
the high temperature case are shown in figure 1. Since the step direction is random, this
represents a very stringent test of the accuracy of the gradient, and we believe that the excellent
agreement between the predicted and actual energy changes demonstrates that our approach
gives an accurate gradient, even at large electronic temperatures.

The OEP is found by using the gradient to iteratively minimize the energy. We
implemented this minimization using Chebyshev acceleration on the fixed point equation
xi+1 = xi + τ∇ f (xi) for some fixed τ , empirically chosen. The minimization step replaces
the standard self-consistency iteration in our code with the gradient calculation and potential
update replacing the conventional density mixing. The convergence of the energy of our test
system during this process is shown in figures 2 and 3. In figure 2, we used our approach
to perform a LDA calculation. The errors in the energy during the iterative minimization are
computed by comparison to the result of a highly converged self-consistent calculation. The
convergence demonstrates that the iterative OEP and self-consistent approaches give the same
result, as would be expected for the LDA energy functional. This shows that our minimization
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finite difference comparison (high temp)
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Figure 1. A comparison of the energy
change predicted from the gradient and the
actual energy change observed during a
random walk in the potential. The crosses
are the calculated values. The solid line
is a guide to the eye representing perfect
agreement.

lo
g1

0

iteration

room temp

E–Emin
||g||^2

–20
–18
–16
–14
–12
–10
–8
–6
–4
–2

10 20 30 40 50 60 70 80 90 100

lo
g1

0

iteration

high temp

E–Emin
||g||^2

–20
–18
–16
–14
–12
–10
–8
–6
–4
–2

10 20 30 40 50 60 70 80 90 100

Figure 2. The error in the L D A energy, as well as the square-norm of gradient, during the iterative
minimization on a log scale. The top plot was run at room temperature (25.67 meV) and the bottom
at high temperature (1 eV). g = ∂E

∂V (r) from (13).

approach is reaching the minimum of the energy functional. In figure 3, we performed an EXX
calculation. The errors in the energy were approximated by comparison to the converged result.
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Figure 3. The convergence of the exact exchange energy, as well as the square-norm of gradient,
during iterative minimization on a log scale. The top plot was run at room temperature (25.67 meV)
and the bottom at high temperature (1 eV). g = ∂E

∂V (r) from (13).

In both the LDA and EXX cases, we found that the convergence is only weakly dependent
on the electronic temperature. The asymptotic rate of convergence obtained in the iterative
OEP approach is not as rapid as the highly optimized mixing methods typically used in self-
consistent calculations, but a reasonable accuracy for practical purposes (10−4 Ryd) can be
obtained easily.

7. Discussion

We have found and verified an expression for the gradient of the Kohn–Sham energy with
respect to the local potential appearing in the Kohn–Sham Hamiltonian. Our derivation based
on the density matrix naturally provides a result that is valid at finite temperature. The cost of
evaluating the optimized effective potential using this approach should be comparable to the
cost of a traditional density functional calculation using standard functionals such as the LDA
or GGA, but a greatly extended family of exchange–correlation functionals that have an explicit
dependence on the Kohn–Sham orbitals can be considered.
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Städele M, Moukara M, Majewski J A, Vogl P and Görling A 1999 Phys. Rev. B 59 10031
[9] Görling A 1999 Phys. Rev. Lett. 83 5459
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